UCRL- 96034
PREPRINT

GIGAFLOP SPEED ALGORITHM
FOR THE DIRECT SOLUTION OF

LARGE BLOCK~TRIDTAGONAL SYSTEMS
IN 3D PHYSICS APPLICATIONS

David V. Anderson
Alan k. Fry
Ralf (ruber

Alexan:re Roy

E]

This paper was prep: red for submittal to
Journal of Pari1lel Computing

Januay 1987

This is a preprint of a paper intended for publication in a journal or proceed-ngs. Since
changes may be made before publication, this preprint is made availabl. with the
understanding that it will not be cited or reproduced without the permis-ion of the
author.

Publication Information
This article was published in Computers in Physics, March-April, 1989, pp. 33-41

DISCLAIM “R

This document was prepared as an account oi work sponsored by an agency of the
United States Government. Neither the United “States Government nor the University
of California nor any of their employees, make, any warranty, express or implied, or
assumes any legal liability or responsibility fo: the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific
commercial products, process, or service by trude name. trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Governmen: or the University of California. The
views and opinions of authors expressed her:in do not necessarily state or reflect
those of the United States Government or the 'Iniversity of California, and shall not
be used for advertising or product endorsemer purposes.

January 20, 1987

Gigaflop Speed Algorithm
for the Direct Solution
of Large Block-Tridiagonal Systems
in 3D Physics Applications

David V. Anderson and Alan R. Fry
National Magnetic Fusion Fnergy Computer Center
Lawrence Livermore National Laboratory
Livermore, California, 94550, USA

Ralf Gruber and Alexandre Roy
Centre de Recherche en Physique des Plasmas
Association Euratom-(Confederation Suisse
Ecole Polytechnique Federale de Lausanne
CH-1007 Lausanne, Switzerland

ABSTRAC”

In the discretization of the 3D parti:l differential equations of many
physics problems, it is found that the resultant system of linear equations
can be represented by a block tridiagonal matrix. Depending on the sub-
structure of the blocks one can devise many algorithms for the solution
of these systems. For plasma physics problems of interest to the authors
several interesting matrix problems arise which we expect will be useful in
other applications as well. In one case, where the blocks are dense, we have
found that by using a multitasked cyclic reduction procedure, it is possible
to reach gigaflop rates on a Cray-2 for the direct solve of these large linear
systems. We have recently built a new tode PAMS (PArallelized Matrix
Solver) that embodies this technique and nses fast vendor supplied routines
and obtains this good performance. Manipulations within the blocks are
done by these highly optimized linear algebra subroutines that exploit vec-
torization as well as overlap of the functional units within each CPU. In
unitasking mode, speeds about 340 megaflops have been measured. The
cyclic reduction method multitasks quite well with overlap factors in the
range of three to four. In multitasking mode, average speeds of 1.1 gigaflops
have been measured for the entire PAMS algorithm. In addition to the
presentation of the PAMS algorithm, we show how related systems having
banded blocks may be treated efficiently hy multitasked cyclic reduction in
the Cray-2 multiprocessor environment. The PAMS method is intended for
multiprocessors and would not be a method of choice on a uniprocessor.
Furthermore, we find this method’s advantage to be critically dependent
on the hardware, software, and charging algorithm installed on any given
multiprocessor system.

1. Introduction

The arrival of supercomputers having many processors with a total com-
puting power exceeding 1 gigaflops (> 10° floating point operations per
second) and memories in the range of 64 million to 256 million 64 bit words,
forces us to adapt the algorithms of our physics calculations to the architec-
ture of these computers. Depending on the sparseness of the matrix system
that arises in a given physical problem one may choose iterative or direct
methods of solution. We note that for a large class of problems the direct
methods are most efficient, particularly for computers with large memories.
In this paper, we present a set of direct matrix solvers specifically adapted
to the multiprocessor shared memory supercomputer of which the Cray-2
is representative. We are hopeful these methods will carry over to the new
line of ETA multiprocessors and other machines of this type.

Some of the matrix problems presented here are those encountered in
some of the authors’ calculations of the equilibrium and linear stability
properties of magnetically confined plasmas. Two of the three problems
presented have analogues in other applications while the third one may be
unique in our estimation.

Although the bookkeeping of the algorithms used here is somewhat com-
plicated, the basic idea is simple. These global matrix problems are repre-
sented by the two level structure of a hig matrix composed of block elements
that are in turn familiar elementary matrices. Calculations within blocks
will be treated by highly optimized vector coding, while calculations at the
global level will be multitasked to the extent possible. In connection with
this latter point, the method of cyclic reduction leads to an algorithm that
is easily multitasked.

The notation of this paper will us.: upper case letters to represent global
matrices and vectors, while lower case letters will be used to represent the
block sub-matrices and associated sul-vectors. We shall have no occasion to
refer to the actual elements within tl.ese blocks or sub-vectors as these are
manipulated by standard techniques - linear algebra with which the reader
is assumed to be familiar. The use of positive integer superscripts will refer
to the reduction level and the use of he notation b~! will mean the matrix
inverse representation of the block b.

We organize this paper as follow: In Section 2 we describe the matrix
forms that have dense blocks and showv. in detail. by way of a specific example,
how the PAMS code solves such a problem. Then in Section 3 we describe

U

two other matrix problems that possess structures that require a somewhat
different approach at first, but which after one stage of reduction are brought
into the form solved in Section 2. In Section 4, we present results of actual
Cray-2 runs in which very favorable performance was measured for the entire
matrix solver. At a speed of 1.1 gigafiops we believe PAMS may be the
fastest application code running on a (‘ray-2. Section 5 discusses what
has been achieved here, describes limitations of the method, and concludes
somewhat equivocally as to the value of the PAMS approach relative to
various multitasking environments. Finally, appendices present the general
formulae of the PAMS method and more details about the sparse techniques
of Section 3.

2. The Solution of Tridiagonal Problems with Dense Blocks

Consider the matrix problem 4;X - Y which has the structure shown
in Fig. 1. The matrix A, is block tridiagnnal with dense blocks. In a typical
problem there may be on the order of 100 rows of blocks comprising the
global matrix. The blocks, in turn, consist of densely filled elementary ma-
trices with rank of order a few hundred. Such matrices arise if, for instance,
one expands a 3D partial differential equation using global functions in two
coordinates and finite elements in the third one. The number of block rows
equals the number of expansion functions for the third coordinate, while the
rank of the dense blocks equals the product of the dimensions of the global
functions used in the first two coordinates.

We have drawn this example from a 3D toroidal plasma equilibrium
calculation which we are currently developing. We are in the process of gen-
eralizing the analysis of the ERATO 2I' equilibrium and stability methods
to three dimensions.[1] The poloidal and toroidal angle coordinates are pe-
riodic and are being treated by finite Fourier representations in which each
basis function spans the full domain. The radial (toroidal minor radius)
coordinate is being represented by loca; finite element basis functions. The
tensor product of the three coordinate representations forms the 3D model
in which we expand the equilibrium equations. When the resulting linear
equations for the expansion coefficients are ordered such that the indices of
the angle coordinates are the fastest turning, then the matrix for this prob-
lem is block tridiagonal with dense blo-ks. Within each block the elements
are representing the coupling among tl e angle coordinates; since the basis
functions of the angle coordinates span the full domain, every element is

generally non-zero. Thus the blocks are dense. The index that labels the
blocks corresponds to the radial coordinate where the basis functions are
localized. We are here assuming that only “adjacent” basis functions couple
which is typical of linear “tent” functions. This local coupling leads to the
tridiagonal form among the blocks. These choices for basis functions have
been found to be near optimal for the kinds of toroidal plasma configura-
tions currently of interest in the magnetic fusion research community and
have been used in many other theoretical models. For example, the analy-
sis of the PEST code (Princeton Equilibrium and Stability Code) could be
reduced to this form A,.[2]

To make these ideas clear, let us consider the case for N = 7 block rows
in the global matrix. For the first matrix problem we are considering, the
global equation is

A X =Y.
Written out we have 7 block equations.
blz, + cizy =d;
alzy + byxy + chxs =d}
alzy + bizs + cizy =d}
alzy + bizy + x5 =d} (1)
arz4 + s + cize =d;

1 1 1 1
g5 + bgxe + cgTT = dg

1 1 1
arze + by = ds.

This system of block matrix equations can be solved by cyclic elimination
techniques. In words, we use substitution to eliminate all of the odd num-
bered equations which at the first stage of reduction leads to a global system
of rank=3 in terms of the number of blucks. Repeating this procedure again
leads to a rank=1 system that we can solve directly using techniques ap-
propriate to dense elementary matrice-. Since the formulas of substitution
used in the elimination procedure are all saved, one can obtain all of the
unknown subvectors z; from the solutinn of the rank=1 system.

This process proceeds through several stages labelled by k as follows,

kzl,...,il.0g2 N)
Within each stage we eliminate all of tne z; given by
: : N +1
— k-1, -
j=(2i-1)2""% zal,...,~2k~.

The notation (log, NN) is to be interpreted as meaning the greatest integer
bounded by (log, V).

Proceeding with the case at hand, where N = 7, we write out the solu-
tions of the odd-numbered sub-vectors by inspection of Eq. 1. That is, at
the first level of reduction £k =1 and 7 = 1,2,3,4. Thus we eliminate the
sub-vectors z1, 23, z5, and z7 by solving the odd numbered block rows to
obtain,

zy = (b1)7'(d] - ciza)

z3 = (b3)7'(d} — 232y — c3za) (2)
zs = (bg)"'(ds — a5T4 — c5T6)

z7 = (b7)7'(d} - ajze).

By substitution of Eqs. (2) into the rem:ining, even numbered, block rows
we get,

b2zy + ciz, = d
alzy + bizg 4+ cioe = d2 (3)
ag:c4+b§;x:6 = d%
where
8 = % a6l - el
by = by —ai(by) " — ci(b3) a3
b = bg—agby) g — ca(bl) g
@y = —ay(b3)7'a3
aj = —ag(by)lag (4)
d = —a®)q
G = —cilbs) '
& = d-adehd - e

d; = dj—aj(bs)”"dy — ca(bs) ' ds
di = dg—ag(b;)” dy — cg(by) .

The system in Egs. (3) is of the same form as the original problem but has
the lower rank = 3. This suggests, by induction, that one can successively
reduce the system until its rank is one. "The solution of such a simple system
then leads to all the other solutions by w.iy of the substitution formulae such

as those given in Egs. (2). The several terms in the Eqgs. (4) that have three
matrix factors will be called the triplet terms. Since they are all of the same
form one method of evaluation will extend to all of them. Before describing
the details of the remaining levels of reduction, let us consider how Eqs. (4)
are parallelized.

First, an inverse representation of the indicated blocks must be obtained.
That is, (b1)7!, (B3)7!, (b3)! and (b}~ must be represented. The PAMS
code allows one to choose either the actual matrix inverse or an lu factoriza-
tion. We allow this choice because it is not clear which will ultimately run
faster. Linear algebra tells us the factorization-backsolve approach always
has fewer arithmetic operations than the inversion-multiplication alterna-
tive. However, this latter method is more highly optimized in existing soft-
ware and runs faster. We keep the former because it may be better optimzed
in the near future.

In the above formulae of Egs. (4) we note the inverse operates on a block
matrix or on a sub-vector. Depending on the choice of the representation of
the inverse, we either perform matrix nultiplication or we apply backsolves
to obtain the result. For example, the first block matrix problem to be
encountered in evaluating Egs. (4) is, say,

h= (b1 el

In the one version the actual inverse m.atrix is used to multiply c} to obtain
h. For the other version we solve the :quivalent problem

blh :c

by first generating lu factors for b} which are then used in the familiar
backsolve operations to obtain A. When h is a matrix, as in this specific
example, there are really j such systeins to solve where j is the rank of the
block.

The remaining operations in Egs. (4) are trivial matrix multiplications
and additions which are easily impleniented.

Having now reviewed some of the details about how we carry out the
operations on the blocks, we turn to exaniine Egs. (4) to learn what proce-
dures are independent so that multitasking may be applied.[9-12] As they
stand, the formulae in Egs. (4) are not independent because the b inverses
couple many of them together. But by generating these formulae in two
stages, we do find sufficient independence to allow multitasking. At the first
stage we compute

1)l (b1)~'d]

(b3) a3 (b3)~ ¢! (b3)~"d3 (5)
(b5)"'ag (b3)"te (bs)""d;

(b7) " af (b7)7'd.

We have displayed on separate lines those procedures that are independent.
Thus the indicated operations can be dore in four tasks to be run in parallel
on separate processors.

In the second stage of the evaluation of Egs. (4) we compute

b & df
a3 b3 % d; (6)
a3 b3 d3

in three independent tasks. None of the »perations in the second stage may
commence until all of the results of the first stage are completed.

Now we proceed to the second level of reduction in which k = 2 and
i =1,2. We thus solve the odd rows from Eq. (3) to get

I = (b%)—l([l% - C.f:l:4) (7)
s = (b3)7'(E - alz,).
By substituting these into the even ro.s(s) of Eq. (3) we obtain a single
equation for zy4:
b:liI4 = i:{
Here, the coefficients at the next level «re,
2 2032y~ 2 —
b = b3 —ay(b7) 7 ef — 3(b3) a3 (8)
di = dy —aj(b])” di - 5(b3) 7" 5.
The operations in (8) are treated in twc stages just as was done for the Eqgs.
(4). There is less oppourtunity for mu 'titasking here because one can see

the first stage only admits two independent tasks and the second stage just
one.

At this point we have completed the reduction phase of the calculation
by having reduced our original rank N = 7 system of blocks down to a single
block equation. We solve this equation to obtain 4 either by inversion or
by factorization. Clearly, this step cannot be multitasked.

What we call the synthesis phase of the calculations begins here. Using
the several formulas already developed we rapidly generate all of the other
sub-vectors from xz4. This is done by next evaluating Eqs. (7) to find x5 and
T¢ by using the inverse representation already computed (and saved) for the
operators (b2)~! and (b3)~!. The two tasks found here allow some parallel
operation via multitasking.

Lastly, we perform the operations of Egs. (2) to obtain the remaining
unkno-wvn sub-vectors y, 3, Ts, and 7. Four tasks exist here which allow
full multitasking on the four processor Cray-2.

With regard to what can be multitasked, we have identified two stages
at every level of reduction and one stage at every level of synthesis. If
one does an operation count, one finds almost all of the work is done in
the reduction phase. In the example we give here, only one level could be
fully multitasked. As is shown by the more general algorithm, given in the
appendix, more practical problems will have a larger system of blocks which
implies more levels of reduction. All of these levels will fully multitask except
for the last two of which one partially multitasks. At each level the work to
be done is just proportional to the number of rows of blocks. From these
considerations we derive a formula for the maximum multitasking overlap

that can be achieved:
4N

L'+ N
Figure 2 shows the maximum possibie multitasking overlap as a function
of the number of block rows. For 64 block rows, which may be regarded as
typical, one could achieve an overlap of M = 3.7. This confirms an earlier
suspicion that multitasking cyclic reduction is a viable technique. Later,
after we present some related problemns and their solution strategies, we
shall present results from the Cray-2 (f runs of PAMS on the matrix A,.
As presented the PAMS method .ippears to require the storage of 2N
blocks for the types a, b, and ¢. Firsz, we point out that should we wish

to solve for more than one right han« side then we must store all of the a
and c blocks since the even numbere | ones must be saved (at each level)

PAMS Storage in Numbers of Blocks
]| Unitasking | Multitasking

Single 3N 4N
Solution
Multiple 5N 5N
Solutions

Table 1: The requirments for storing th« blocks depend on which arrays
may be overwritten.

inorder to treat subsequent Y vectors. If just one problem is to be solved,
then we can overwrite some of the blocks: namely, we can overwrite the even
numbered blocks a, b, and ¢ as we proceed through the reduction levels. Were
this a unitasking algorithm, only the blocks appearing in the elimination
formulae (e.g. Eqs. 2 and 7) need be saved. Thus for the single problem
in unitasking mode this suggests the use »f a more compact storage scheme
where the block matrices appearing at the higher levels would find storage
in the k = 1 level by overwriting the ever: numbered blocks. Thus one need
only store N blocks each for the a, b, and ¢ types when unitasking. For the
circumstance of multitasking, additional constraints arise which complicate
this technique and lead to the requirement of an extra N blocks of scratch
storage for the first reduction level. The implication is that multitasking
increases the storage requirement from .t least 3V blocks to at least 4V
blocks for the problem A;. Where one lias multiple problems, the storage
requirement goes to 5N both for unitasking and multitasking. In the Table
1 we show PAMS storage requirements for the blocks. Each block has ;2
words where j is the block rank. To keep the PAMS code most general we
have chosen to not overwrite the even niumbered a and ¢ blocks, but it will
be straightforward to reduce the storage for cases in which it is warranted.

3. Related Sparse Systems froin Plasma Physics

3.1. The Matrix Form A,

Another matrix problem that is enc.;untered in plasma physics equilib-
rium theory and other disciplines is also block tridiagonal except the blocks

are not dense. In 3D representations where finite elements (or differences)
are used in two or more of the coordinates one can specify the linear system
with a matrix that contains blocks that are banded and often sparse. For
2D problems in which both coordinates are represented by finite elements a
matrix like this arises also.[3] In Fig. 3 we display the artist’s view of such
a matrix which we denote by A,.

The method of solution is very similar to what we described above. We
could use the method for the matrix A; but it would not take advantage
of the banded structure of the blocks and thus would be wasteful of com-
puter memory and time. At the first stage we also eliminate half of the
sub-vectors by the same formulation given in Egs. (2). And we also get the
same expressions for the reduced system (Eqs. (3)) and forumulas for the
new coefficient blocks(Egs. (4).) In the method we gave for A, we permitted
the option of using inverses or factorized representations. For A, we restrict
the method to using factorization so that one can use band solvers or sparse
matrix techniques to implement the formulas of Egs. (2) and of Egs. (4).
At this first level all the matrix blocks are stored in compressed form typ-
ical in band solvers. If the matrix blocks are also sparse one can employ
storage schemes and solvers that are even more economical than those of
the band solvers. The sparse or banded structure does not carry over to the
subsequent levels of reduction. In fact the blocks formed on the left hand
side of Egs. (4) are dense. Thus for the second level of reduction, and all
higher levels, one uses the same method used for A;. In the synthesis phase
of obtaining all the = sub-vectors, orne proceeds as in A4; until one reaches
the last level. At the last level the appropriate sparse or banded version of
Egs. (2) are used to generate the remaining sub-vectors z.

Approximately half of the storage requirement and half of the arithmetic
operations are used in the first level of the algorithm given for A;. In the
algorithm for A; the banded or sparse structure at the first level requires
comparatively little storage and much less arithmetic. This suggests that
the method for A, will save up to a factor of 2 in both memory and computer
time as compared to using the full PAMS method. Further, we have learned
that once the first level of reduction is done one then uses the algorithms
of PAMS to complete the solution of the reduced system obtained. From
a coding viewpoint, one would retain PAMS and add routines to carry out
the first level of reduction and the last level of synthesis. In some sense
matrix A, is a special case of A3 to be described next. Some details of the
implementation of the first level treaiment of matrices A; and Aj are given

0

in Appendix B.

3.2. The Matrix Form A,

The problem for A3 is shown pictorially in Fig. 4. The structure of
As is not strictly block tridiagonal and close inspection of the Figure shows
that there are four types of blocks. There are small and large square blocks
and there are other rectangular blocks vith either a vertical or horizontal
orientation.

One type of plasma calculation tha: produces this form of matrix is
that of the linear stability of two dimensional equilibria when hybrid finite
elements are used.[4,1] In this approack a different set of basis functions
is used to expand the radial derivatives than would be obtained by simple
differentiation of the radial basis functions. It is found that this approach
is very accurate in spite of its use of so-called non-conforming elements; it
largely eliminates the pathological condition known as spectral pollution as
described in the cited references.

In the 2D case there are three spatial components to the displacement
field. If one orders the discrete equations properly the matrix structure Aj is
obtained. The z vectors contain the radial displacements while the y vector
contains both the azimuthal and axial displacements. In the finite element
expansion there are equal numbers of basis functions for radial, axial, and
azimuthal displacement expansions. Since the y vector combines the latter
two together, it will have twice the number of unknowns as the z vector.

In our development of the 3D linear stability code we are also intending
to use hybrid elements in the radial coordinate. A matrix very similar to the
one we call A3 results. Obviously, there are many variations of the detailed
structure of A3 for the 3D stability cal-ulation depending on the choice of
basis functions. Nevertheless, many of them will share a form like A; that
will enable one to use very similar techniques. As in the foregoing example
for the solution of the matrix A; we fin it useful to write out an example.

11

The system to be solved is written

b1$1 +ciy +w1$2 = d]
aye1 +byy1 + 4T = ef
u;ls:l:l + a;yl + b;:cz + c;l,yz +w,;z3 = %
alzy + blys + cizs =€} (9)

uizy + ajys + bizs + ciys + wizy = dj

ax3 + biys + chzq = €}

utzs + alys 4+ blzy = dj

In all of the blocks of Egs. (8) we have sparse matrices. To solve this

system we eliminate all the unknown sub-vectors y; for all i. Doing this we
have,

y1 = (b3)"H{d] — a}z1 — c371)
y2 = (b3) 7' (d; — ajz2 — cj73) (10)
ys = (bg) ' (d3 — ciz3 — caT4)

From the substitutions we make the following identifications:

b= b —ci(bd) a3
R
5 b o) e} - cle))
b= by —ai(bg) e
= ul—al(b) a%
= “é—as(b4 _la}t
= u}—ai(bi la (11)
- wl-dl0)
- W do)
- el el

|- cl(o}) el

= &) al(b); el - (b)) el
= - al(o] el - d(6l) el
= - al(p) el

Il

a
-
Ay

S & HH QR AL &S
|
&
I
(o]

All of the operations in Egs. (10) am] (11) are sparse matrix operations
which lead to full blocks a?, b2, ¢? .it the second level. As in the two

1

1%

preceding matrix problems, the independent structures of Egs. (10) and (11)
are analagous to those we described for Eqs. (2) and (4). The multitasking of
the two stages is done just as before. What differs here are the manipulations
within the blocks. At the first level some of the blocks are not square.
Only the square ones need an inverse representation which will be done
by factorization only. The rectangular ones only come in as multiplier or
backsolve operands so the treatment is straightforward. In appendix B we
present some details of the sparse treatment of the first reduction level for
the solution of the problem A3 (of which A, is a special case.) Problems A3
and A, share the feature that once the first level of reduction is completed,
one proceeds to solve the reduced problem by the method in PAMS.

In this and the preceeding sections we have presented various block ma-
trix problems that arise in some physics calculations in three dimensions.
All of these problems reduce to the same matrix structure after an initial
reduction procedure is completed. At that point all of them can be solved
by the methods employed in the PAMS code.

4. The Running of PAMS

The PAMS code attempts to exploit several types of parallel operation
at once. We have shown, by way of an example, what procedures are in-
dependent so that they can be multitasked. Within the tasks we use the
various basic linear algebra subroutines (BLAS) which we now discuss from
the point of view of obtaining the other forms of parallelization.

Aside from trivial matrix (or vector) additions and subtractions we use
the Cray Research Incorporated (CRI) routines[5] MINV, MXM, and MXV
as well as the LINPACK routines[6] SGEFA and SGESL. They invert a
block, form a block times block product, form a block times sub-vector
product, factorize a block, and backsolve a block on a sub-vector, respec-
tively. These routines are intended to be highly optimized by exploiting
vectorization, by overlapped operation ¢f the two floating point units (one
each for addition and multiplication), by overlapping memory traffic with
the above, and by use of the fast local meimory for the storage of intermediate
results. The parallelization of vectorization is easily introduced by properly
written fortran code. But to do a good job of obtaining what we shall call
the parallelization of overlap it is often necessary to write the routines in
assembly language (Cal-2 in this case.)

We have identified three types of parallelization, namely: vectorization,

13

functional unit overlap, and multitasking. In the Cray-2 environment, the
first of these permits one to generate a floating point result every clock
period (4.1 nanoseconds). Since there are just two functional units in each
CPU, perfect overlap of them would allow another factor of two beyond
vectorization so that a result would be generated every 2.05 nanoseconds.
We are assuming that we have also overlapped all memory traffic so that it
never interferes with the arithmetic processing. Combining this performance
with full multitasking gives another factor of 4 improvement. Thus the
.theoretical performance of the Cray-2 could be as fast as one result every
.5125 nanoseconds. Expressed as floating point results per unit time we get
1.951 gigaflops (1951 megaflops.)

In this paper we are not solving a specific physical problem, but are
demonstrating the PAMS technique for a class of problems that lead to ma-
trices of the given forms. In this sectiou we present the results of test runs in
which we formulated the matrix operators from random numbers and sub-
sequently imposed certain asymmetries and diagonal dominance properties.
Both our interest in demanding 3D physics problems and our curiosity about
the Cray-2 performance on very large inemory problems led to our choice of
the problem we present here. We decided on a problem with 64 block rows;
this corresponds to 64 radial zones of a finite element (or finite difference)
method. In the other angular coordinates we decided to use a total of 319
global basis functions. It would be unlikely that a real application would
choose 319 because it must be the prcduct of the dimensions of the two 1D
subspaces; here only 11 and 29 are acceptable 1D dimesnions. Nevertheless,
we chose this number because it was very close to a threshold where the
implied code size begins to exceed the memory limit of 40 million words
that is currently enforced at Livermore. We chose the specific number 319
because it is just one less than a multiple of 64. This means the vectoriza-
tion will be very close to optimal (a mulitple of 64 would be slightly better
if vectorization were the only issue.) The choice of an odd number just less
than a multiple of 64 gives optimal performance of the memory fetches and
stores because it minimizes bank and quadrant conflicts. A slightly more
general MXM would allow multiples of 64 and at the same time suppress
bank conflicts by using a different storage dimension on the leading index
than the matrix dimension; this storage dimension would typically be one
larger than the multiple of 64. MINV already allows the distinction between
matrix dimension and storage dimensinon. By these choices we felt that vec-
tors would be long and tasks would b big so that the parallel performance

might approach its theoretical asympotitic values.

Once given a problem, the bulk of all the calculation is done in three sub-
routines PAMSPREP, PAMSTASK, and PAMSWORK. During the upward
sequence of reduction the first two of these are called at each level.

PAMSPREP requires the generation of the inverse representation either
by calling MINV (to get the actual inverse) or by calling SGEFA (to ob-
tain the lu factors.) Then either MXM or SGESL is used with the inverse
representation to generate the right-hand pair of the triplets. At the time

-of the writing of this article, the routines MXM and MINV have been very
well optimized for the Cray-2 by CRI. The bulk of these routines are writ-
ten in Cal-2 assembly language to insure vectorization, good functional unit
overlap, and exploitation of the local memory. The alternative routines,
SGEFA and SGESL (of LINPACK), are written in fortran and as of yet do
not have fast assembly language versions; thus we cannot presently obtain
the desired speeds from their use. By using MINV and MXM we estimate
unitasking speeds of about 340 Mflops for PAMSPREP from which we can
infer gigaflop speeds when it is multitasked.

PAMSTASK has the job of computing the triplets and then adding them
together to form the matrix blocks (and sub-vectors) at the next reduction
level. MXM and MXYV perform most of these operations. Almost all of the
work is done by MXM thus PAMSTASK is expected to be slightly faster
than PAMSPREP and somewhat above a gigaflop when multitasked.

Lastly, PAMSWORK carries out the generation of the z’s from the
elimination formula and uses MXV or SGESL depending on the inverse
representation chosen. MXV is adequately optimised thus suggesting that
PAMSWORK will run well. Counting operations shows that PAMSWORK
does very little compared to the prececding two subroutines so its perfor-
mance is not crucial to the overall speed.

Before displaying some typical results from PAMS we list and explain
several of the headings seen in the outjput:

jdim The rank or order of the block n:atrices.

ndim The number of block rows in thr global matrix.

np The number of reduction levels.

nmtskon For nmtskon = 0 (1) the co:le unitasks (multitasks).

inmon For inmon = 0 (1) the code uscs LU factorization (uses the inverse).

1t

iforon For iforon =0 (1) the code uses Cal-2 assembly language if available
(uses fortran).

pamstask The designation pamstask: k=n denotes that subsequent output
gives the performance for the subroutine pamstask at the reduction
level k = n.

upred The designation upred: k=n denotes that subsequent output gives
the performance of the entire reduction level k = n which includes the
subroutines pamstask and pamsprep.

dynsyn This designation precedes the sutput of the synthesis performance
statistics for the work performed n the subroutine pamswork.

global statistics The output following this title gives the performance
statistics for the entire solution process.

CAL inv/mxv This line indicates the assembly language Cal-2 was used
where needed and that matrix inversion was chosen.

relative difference The error of the X vector is given as the relative L2
norm.

With these terms defined we preser:: here the output from our best run
to date:

jdim ndim np nntskon inmon iforon

319 64 6 1 1 0

pamstask: k= 2

CPU sec. Sys sec. CPU overlap Gigaflops
23.962390 .005633 3.690229 1.266691
upred: k=2
CPU sec. Sys sec. CPU overlap Gigaflops
44.485919 .027430 3.751080 1.220194
pamstask: k= 3
CPU sec. Sys sec. CPU overlap Gigaflops

1€

11.787837
upred: k=3
CPU sec.
21.981358
pamstask: k= 4
CPU sec.
5.585660
upred: k=4
CPU sec.
10.510431
pamstask: k= 5
CPU sec.
2.585590
upred: k=5
CPU sec.
5.005815
pamstask: k= 6
CPU sec.
.979820
upred: k=6
CPU sec.
2.068654
pamstask: k= 7
CPU sec.
.325788
upred: k=7
CPU sec.
.850528
upred: k=8
CPU sec.
.207725
dnsyn: k=7
CPU sec.
.005726
dnsyn: k=6
CPU sec.
.006691
dnsyn: k=5
CPU sec.

.005048

Sys sec.
.010818

Sys sec.
.005085

Sys sec.
.028172

Sys sec.
.005685

Sys sec.
.012302

Sys sec.
.002080

Sys sec.
.004769

Sys sec.
.000900

Sys sec.
.002251

Sys sec.
.000606

Sys sec.
.000613

Sys sec.
.000612

Sys sec.

17

3.738749

CPU overlap
3.656341

CPU overlap
$.182449

(PU overlap
{.498240

(PU overlap
i,088537

«'PU overlap
11.818901

.'PU overlap
.. 199246

"PU overlap
.. 236935

"PU overlap
..001476

JPU overlap
1.003600

JPU overlap
.997824

CPU overlap
.965110

CPU overlap
.970554

CPU overlap

1.283692

Gigaflops
1.192673

Gigaflops
1.115797

Gigaflops
1.171514

Gigaflops
1.091687

Gigaflops
.954285

Gigaflops
.479391

Gigaflops
.467610

Gigaflops
.401340

Gigaflops
.384360

Gigaflops
.311865

Gigaflops
.051401

Gigaflops
.088472

Gigaflops

.012838 .001651 . 984660 .109147
dnsyn: k=4
CPU sec. Sys sec. CPU overlap Gigaflops
.025932 .000606 .992233 .116676
dnsyn: k=3
CPU sec. Sys sec. CPU overlap Gigaflops
.050567 .000605 . 996021 .124128
dnsyn: k=2
CPU sec. Sys sec. CPU overlap Gigaflops
.099107 .000617 .997946 .128957
dnsyn: k=1
CPU sec. Sys sec. CPU overlap Gigaflops
.198693 1 .002554 1.002867 .130307
global statistics
CPU sec. Sys sec. CPU overlap Gigaflops
85.524900 2 .106610 3.315195 1.088404
CAL inv/mxv
relative x difference = 0.3536te-13

Multitasking is giving close to optimal overlaps even when measured over
the entire run. Vectorization seems to be running near its asymptotic speed.
We see a sustained speed of 1.267 gigaflops during the first reduction phase
in the subroutine PAMSTASK (for 27 seconds of CPU time.) Averaged over
the entire code run we measure the speed to be 1.088 gigaflops.

The Cray-2 installation at Livermore uses the very interactive multitask-
ing time sharing system CTSS. In this dynamic environment, the operating
system scheduler cannot start multiple tasks simultaneously but must start
the various tasks as processors become available. Typically, in this environ-
ment, multiple tasks start within seviral milliseconds of each other. This

sequence is dependent on the nature of the competing codes that are sharing
the memory and thus the exact amount of multitasking overlap will depend
on these statistical details. In several runs of the PAMS code we have seen
roughly 10% variations in the speeds reported which seems consistent with
the CTSS system. The results displayed here were obtained from a special
“stand alone” run in which time-sharing was suppressed. When run under
time-sharing mode, the speeds are still juite high- about 5% slower than
the above results.

The PAMS code together with its driver routine sets up matrix problems
with known solutions. It does this by the artifice of choosing the solution
first and then generating the right-hand ~ide by matrix multiplication. The
so-called true solution is saved while the PAMS routines carry out the algo-
rithm. The obtained solution is compare:{ with the saved one. The solution
is checked further by muitiplying it by rhe matrix to obtain a right-hand
side vector to be compared with the given source vector. In the results
presented above, the errors shown are consistent with the roundoff errors
in the Cray-2. We show the results of the CPU time, the system time, the
overlap, and the gigaflops at each of the synthesis and reduction levels and
additionally give these numbers for the subroutine PAMSTASK which was
so well optimised. The performance of PAMSPRERP is almost as good. We
have learned of other optimal routines that may be used to replace MINV
and MXM (if we measure them to be faster.) Thus we may be able to get
about 10% further speedup beyond wha is reported here.

5. Summary and Conclusions

Led by the desire to make more realistic 3D calculations of toroidal
plasma equilibria and their linear stability properties, we have made an
effort to exploit the features of the best scientific computer now available.
The very large memory, of the Cray-2, gives it a capability to compute on
a reasonably refined grid without needing to use disk memory. Its large
memory also allows us to employ certain direct matrix solvers that would
be forbidden on the smaller machines often used. We have shown, by way of
example, that multitasking works extremely well and that implicit problems,
such as those presented here, can be treated with methods that exhibit
large independent processes amenable to this form of parallelism. In our
efforts to get good performance we hav: tried to use the other two forms of
parallelism of vectorization and of functional unit overlap. We have control

over vectorization in the fortran environment, but not over the functional
units- given the compilers in use. Thus we have had to rely on the best
assembly language routines available to implement the basic manipulations
within the blocks. We have seen gigaflops in those code segments that
use well optimized linear algebra routines. Fortunately, in this application,
almost all of the linear algebra was of this requisite form. This suggests that
other applications, many of which are not as implicit as this one, should also
be amenable to solution by comparably fast highly optimsed algorithms.
The Cray-2, indeed, may be seen as the machine it first promised to be-
unequaled in its power and capability among its contemporaries.

5.1. Limitations of the PAMS Method

We must address the question as to when PAMS is inferior to other
methods? The answer depends on the criterion measuring its merit. The
cost, the operation count, the speed, the memory requirments, and the ease
of implementation are all relevant.

First, let us consider the unitasking environment. After many years
of development and experience, direct band solvers are often found to be
the method of choice. Their nearest competitors are usually the iterative
methods such as preconditioned conjugate gradient algorithms which are
prescribed when the rank of the global matrix gets too large. Should the
direct solver be chosen, one proceeds by using an LU factorization of the
global banded matrix afterwhich backward and forward solves are done to
obtain the solution. If the half-bandwidth is « (it does not count the di-
agonal) then a rank n matrix requires about 2n«? floating point arithmetic
operations for its solution. Alternatively, counting the operations in the
cyclic reduction method we find it requires a factor of 1.75 more operations.
Both methods afford roughly equal levels of optimization through vectoriza-
tion and functional unit overlap. Thus the cyclic reduction technique is not
viable in a unitasking computer.

In a multitasking computer, with CPU’s, the multiple processors can
take advanatge of the favorable structure of the cyclic reduction algorithm to
give overall performance gains on the order of p/2 compared to the unitasked
band solver. As shown above, multitasking requires more storage (about a
third more) for single problems having one right hand side. For multiple
right hand sides the storage remains the same as in the unitasking case. In
future more massively parallel compuler architectures considerably higher

performance gains are inferred.

So far we have used performance as the: sole criterion. If we assume that
computer costs are charged on a per cycle basis, then the PAMS method is
always more costly except in the very large memory limit. For using nearly
all of the memory it is assumed that a unitasking PAMS would block access
to the other processors and would consequently be charged for the engen-
dered idle cycles. Unfortunately, costs are not charged in such a simple
fashion. In the MFECC Cray-2 installation, a large charge is made for the
use of memory only during those intervals when the code is running. Multi-
tasking can reduce this memory rent considerably up to a factor of four.At
the current user memory limit of 40 million words the memory charge is 3.6
times the CPU charge per unit time unitasking. In fully overlapped muiti-
tasking it is only .6 times as much. In the two cases then the total charges
are 4.6 and 1.6 per unit CPU time respectively. This gives multitasking a
cost advantage by a factor of about 2.9 per unit CPU time (or per cycle of
computation.) Folding in the extra cycles required for the PAMS method
we arrive at a relative cost advantage of *.7 for using PAMS.

Another possible algorithm uses Gaussian elimination on the blocks such
that the first task eliminates the unknowns from the top down while the
second task eliminates them from the bottom up until a reduced system
with two block rows is obtained. Such an algorithm has the same amount
of arithmetic as the band solver but is limited to only two tasks so is not
attractive for massively parallel computers. It might be suitable for the two
processor Cray X-MP 22 at Livermore but for the four processor Cray-2 it
is questionable.

In summary, we estimate the fully nptimized PAMS will be superior
in performance to a band solver and i the MFECC environment more
economical as well. This latter advantage is critically dependent on the
charging policy of the computer center; changes in the charging algorithm
could quite possibly put PAMS in an inferior position realtive to the cost of
a band solver.

We feel that the combination of the 1iore capable Cray-2 computer with
new numerical techniques such as described here will allow us to routinely
calculate physical phenomena that was heretofore impractical and slow. The
PAMS method provides another examj:le that implicit systems (such as
those that yield block-banded matrices) -an be multitasked with good mul-
titasking overlap. Possible drawbacks to the method are its somewhat larger
memory requirement and its greater nuriber of arithmetic operations which

21

could conceivably translate into higher costs.

Appendix A. PAMS Formulae and Data Structure

All of the linear systems in the PAMS analysis are of the form
afz(i_1yph-r + BT + S r gy = dF (A1)
where at each level k the index ¢ ranges uver
i=1,...,n(k). (A2)

The given first system of equations has k = 1 and n(k) = N. At the
subsequent levels of reduction we have

k—1)+1

n(k) = ™ - 1<k<K (A3)

where K = 2 + log,(IV — 1). It is 10 be understood that the integer
formulae always truncate to the integer value not greater.

The recursion formulae for the block matrices, that come from the sub-
stitution step, are:

k k-1 k—1\—1_k—1
a; —ay; (b3 1) agiy
k E—1 k—1/3k—1 y—=1 1 —1 k—1/pk—1 =1 _k—1
bi = by —ay by)T el — < (baiy1) T agipy (A4)
k k—1¢pk—1 y—1 k-1
¢ = —¢ (b)) e
k k—1 k—1pk—1 y—1 s—1 k—1/pk—1 y—1 jk—1
di = dy —ay (b)T Ayl —oy (by) T dyi
for i = 1,...,n(k) at each level k. These blocks are computed recursively
in an ascending sequence of k’s for k = 2,..., K. At the top most level we
have a special case of the preceding foriulae, namely:
K K-1 K- K—-1y-1 K-1
by =by —a ! by) 1C1 (A5)

K _ JK-1 K—1, pK—1y—1 K1
B Y L R P A

The rank one system obtained at the to} most level gives the special formula
for computing the Nth sub-vector zn:

oy = (o) df. (A6)

Next, we recall the elimination formul: e that were used in the derivations
of the reduced systems. For this we ha e,

Ligk—1 = (bf)_l[df - afm(l,,, y2k-1 Cff(z'ﬂ)zk*l] (AT)

2:

which is evaluated for i = 1,...,n(k) «t each level k. These are performed
in a descending sequence of k’s:

k=K, .., 1.

The formulae given here are generalizations of those given in Section
2. Here we have presented the formulae in the order they are computed
whereas earlier we gave them in the orcder they were derived.

To describe the multitasking[3-12] of these procedures, we first recall
that substitution formulaes are evaluated in two stages within each level
k. When this is done, all of the operations denoted by the subscript i are
independent of all the other ¢’s. The siniplest approach would be to generate
n(k) separate tasks at each level k. We b:elieve that it is most efficient to limit
the number of tasks to equal the number of processors because this minimizes
the multitasking overhead and in this particular calculation tends to preserve
the load balancing (which means keeping the amount of calculation the same
per task.) In our coding we have repla: ed the unitasking construct

do loop i = 1, nok

loop continue

with the structure

do outer jk =1, 4
call swork(jk)
outer continue

24

where the subroutine SWORK contains a partitioned loop as follows:

subroutine swork(jk)

do inner i = jk, nok, 4

inner continue
return
end

In this form, there are four completely independent procedures each identi-
fied by the value of jk. As given here multitasking would not occur unless
we also include the appropriate multitasking commands. To invoke the mul-
titasking of this example we replace the loop “do outer” with

do outer jk =1, 4

call tskstart(idtsk(1, jk),swork, jk)
outer continue
c..Provide barrier synchronization

do barr jk = 1, 4

call tskwait(idtsk(1,jk))
barr continue

In this example, the variable idtsk is & task identifier array used by the
system to keep track of the several tasks. The call to tskstart has the
effect of starting the subroutine swork, hut it does not wait for the return.
The loop outer is rapidly completed at which time all of the tasks have
been started but not finished. To provide simple barrier synchronization
the second loop barr employs the call 1o tskwait which has the effect of
stopping the calling code until each and every task has finished.

The storage of the matrix variables is done as follows. The blocks a¥
and ¢ and the sub-vectors d* are stored in arrays that have just more than
twice the nominal storage needed for just level £ = 1. In the case of the
blocks a* the storage declaration is

25

dimension a(jdim, jdim,2*n¢im+1)

In this example, jdim is the rank of tiie blocks and ndim is the rank of the
global matrix in terms of blocks- its block rank. The second level blocks are
stored in the third quarter of this arriy, those of the third level occupy the
eighth just beyond that, and subsequent blocks squeeze in the remaining
space. In the derivations shown in this paper one might infer that b* and
its inverse are stored in such an extended array. However, it is possible to
mix the b inverses at the various level- k into a smaller array dimensioned

dimension bi(jdim, jdim,ndim) .

A similar declaration is used for the !'s as well. In many applications, the
b’s are not needed later in which cas: it is permissible to overwrite them
with the inverse representations.

Appendix B. Details of A;’s First Level Reduction

Most of what follows is also true for matrix problem A, which is a special
case of Aj.

In problem Aj; there are two different block dimensions and it is ambigu-
ous as to the block count. Do we cour.: the superblocks that overlap, or do
we count the sum of the little blocks plus the big blocks? It does not matter
as long as we are consistent with our starting definition. The notation we
have adopted suggests we count all t:ie block rows; in our example there
are seven block rows at the beginnin,. Another property to note is that
it was straighforward to eliminate the y’s in terms of the x’s. The cyclic
reduction procedure will not permit elitnination of the z’s in terms of the y’s
because the couplings are more complicated and involve other sub-vectors
than those that could be characterized as nearest neighbor. Since the blocks
at the first level are sparse we must employ this knowledge to greatly reduce
the amount of arithmetic to be perfortied. We proceed in two stages as we
did above. In the first stage the calculition of

h = (b} "'a

will suffice to give the method for all ¢ “the products of the right-hand pair
of factors in the triplets in Egs. (11)

26

Let the rank of the block (the number of rows in a block) be j. Whether
banded or sparse, the matrices b} and a} have many fewer non-zero elements
in them than if they were dense. In this context we shall regard an algorithm
as sparse if it computes just on the nou-zero elements. When b is non-
symmetric we compute its lu factorization. If it is symmetric then we obtain
its Cholesky factorization [dl*. Let us consider the case where

lu="»%

We wish to obtain h from
luh =,

Let g = uh so that we are solving

lgz(v

for g. In obtaining the factors | and u which are respectively lower and
upper triangular, the phenomenon of fill-in occurs but the { and u matrices
remain banded within the same band boundaries possessed by b. Since g and
a are matrices we can solve the above eqnation by partitioning each of these
into their several column vectors whic! are then solved by the Gaussian
elimination technique. The backsolve :lgorithm for obtaining g from the
previous equation begins in the first rcw where the [matrix has only one
element. It then proceeds to the subseqiient rows and in one sweep through
the rows generates all of the g elements in a given column of g. Once all the
columns are processed it can be shown that the matrix g is lower triangular
and dense in that region. Next, the equation uh = g is treated by applying
backsolves to the column vectors with.n h and g; this procedure starts in
the last row and proceeds upward gererating each column vector of h in
one pass. h is a full dense matrix. Since u is sparse or at least banded the
nurnber of operations is reduced, even with g being lower triangular dense.
Performing the next product in the triplet is also done quickly because the
matrix of the left factor is sparse or bz.nded.

The operations we have described hire can be performed quickly because
in each case the number of arithmetis operations scales as j2. If we had
begun with dense matrices the scaling would have been ;3.

The other possibility that may be fivored would be to apply cyclic reduc-
tion on these block problems and use t 1e independent procedures as a basis
for vectorization. This could be doun. if the blocks possessed a sub-block
form. We suggest that these options st be tested to see which alternative

71

is preferable for a given class of problems. The choice to make will depend
on the computer bardware characteristics, the relative optimization of the
algorithms, and to some extent the ease of programming it.

In this description of some of the details of carrying out the block manip-
ulations in the first reduction stage of problem A3 we have not mentioned
multitasking. The algorithm for multitasking problem Aj is precisely the
same as for 4; and A, so it is not necessary to repeat. The only differences
are in the techniques used for operations within the blocks which do not
affect the multitasking algorithms.

Acknowledgements

The authors thank Larry Berdabl and Steve White for valuable sugges-
tions. We are appreciative of the high quality routines MXM and MINV pro-
vided by Cray Research, Inc. This work was supported by the U.S.D.O.E. for
the Lawrence Livermore National Laboratory under contract W-7405-ENG-
48 and by the Association Euratom - Confederation Suisse at the Ecole
Polytechnic Federale de Lausanne.

28

Figure 1: Matrix A, is block tridiagonal with dense blocks indicated by the
shading,.

Figure 2: The maximum possible multitasking overlap for the cyclic reduc-
tion algorithm is plotted versus the number of block rows.

Figure 3: Matrix A; is block tridiagonal with banded or sparse blocks indi-
cated by the speckled pattern.

Figure 4: Matrix A3 which contains foir different kinds of blocks arises in
some plasma stability models. The blocks are banded and often sparse.

Figure 1

Maximum theoretical CPU overlap

1 | | [
il [I L
50 100 150 200 250

Number of block-rows

Figure 2

Figure 3

Figure

